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1. Introduction. Many physical problems require the solution of
partial differential equations on some infinite domein § with boundary
9{l. An example is given in fig. 1.

2

x=0
fig. 1- i

For computational reasons @ is replaced by a finite domain Ql

B \—/ Q B, a-4

x=0 x=a B

fig. 2. \

and the problem arises to specify boundary conditions at the artifieial
boundary Ba. Consider, for example, the differential equations for a
nonviscous fluid which at su}sonic speed leaves Ql through the
boundary Ba. Then there is one characteristic which points back into
the region ﬂl and therefore one boundary condition has to be given.
In general, no detailed knovle“&é“err the solution on B2 is given and
other principles have to be applied. For example, if one solves the
problem by a difference approximation then onme often uses upstréun diffe=
rencing on B2 for all the dependent variables (see for example Roache
[4]). This procedure is sometimes combined with overapec:xrymg the
solution on the boundary Bl
Recently, B. Engquist and A. Majda [1] have proposed another
principle, namely, to specify the boundary conditions on 32 in such
a vay that no reflection takes place.

; N 1 (9 ’Z N
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In this paper we want to investigate when these principles
garantuee that the solution of the simplified problem is close to
the solution of the original one. A necessary condition for this is
that in Q - 91 the solution of the original problem only changes
slowly with respect to space and time. Therefore we can linearize the
problem and we assume that the linearizec equations represent a
hyperbolic first order system. This is true for ideal flow problems.

In the next section we consider the model equation

du/dt = du/eax , x>0, t>0,
(1.1)
u(x,0) =‘f(x)‘ for t =0,

on the half lire 0 < x < » and approximate it by

ov/3t = 9v/3x, 0 < x<a, t20,
(1.2)
v(x,0) = f(x) for t =0,

on the finite interval 0 < x < e. The last problem is well posed if
we specify boundary conditions et x = a (but not at x = 0).

Ve solve (1.2) by the Lax-Wendroff difference scheme. As boundary
conditions for the difference approximation we have a number of diffe-
rent possibilivies.

a) For x =@ we either specify v, for example,

v(o,t) = 0,
or we use an extrapolation procedure
(xD,)Pv(0,t) = 0 , BD,v(0,t) = v(h,t) - v(0,t).

For p=2 this is the usual upstream differencing.
b) Por x = a we have the analogous possibilities.
We obtain the following results.
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1) For x = 0 one shall not overspecify, i.e. v shall not be
given. Upstream differencing gives good results.
2) If f£(x) ™ const. for x > a then

(1.3) hD_v(a,t) = v(a,t) - v(a-h,t) =0

can be used. Upstream differencing at x = a can éive completely
wrong results. :

3) The principle of no reflection at x = a is useful only if
f(x) » 0 for x> a.

In section 3 we show that the corresponding conclusions hold for
systems

av/at = A av/ax

vhere A is a constant matrix.
In section U we make a thorough investigation of systems with
variable coefficients

ou/dt = A(x,t)3u/dx.

We show that extrapolation procedures or the principle of no reflection

is useful only if A(x,t) is essentially independent of x. for x > a,

If one knows the asymptotic behavior of A(x,t), for example,

Ax,t) = A + x-aAl(x,t)

then one can derive new principles; which are useful for steady state
calculations.

The last section is concerned with systems
du/dt = A 3u/9x + B du/dy

in two space dimensions. The above primciples are useful if B du/dy
is small, i.e. the problem is essentially one dimensional. For the
case that B is not small we again construct new principles.

S — S AA
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1.4

In many applications the time dependent equations are used to
obtain the steady state solution. We shall also study the effect of
our boundary conditions on the convergence rate to the steads state.
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2. The mcdelAprobieﬁ. We want to solve the differential equation
(1.2) by the Lax-Wendroff scheme. Let k > 0O, h = a/N, N natural
number, denote the time step and the space step respectively. The grid-

points ere given by x =vh, t = nk, Vv=0,1,...,N; 10=0,1,2,... ;
and the gridfuntions by an = w(xv,tn). We approximate (1.2) by

n+l = (I+kD k2 D ) n 0 é <N
"§ 047?D+ i “9 ; v 5
(2.1) )
0
ﬂb = tv ’
vhere

2hDGV, = Vya1 T Vyo1r DDV, WL S W, WD W, mw, -w )
denote the usual centered, forward and backward difference operators
respectively. We assume that k/h < 1, which grantuees that the approxi-
mation is dissipative.

We first study the case that proper boundary conditions

(2.2) D, )Pw" =0, p21, w'=¢

are given. Then the approximation (2.1), (2.2) is stable (see [2]) and
in every finite time interval the solution of (2.1), (2.2) converges
for h + 0 to the corresponding solution of (1.2) which satisfies the
boundary condition

(2.3) v(a,t) = g.

We niwv study the behaviourof (2.1), (2.2) for t + ® with fixed k,h.
We have

Theorem 2.1. Let k,h be fixed. The solutions of (2.1), (2.2) con-
verge exponentially fast to the steady state solution

(2.%) vwSg , Vv=0,1,2,...,N

a8 n + o,
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Proof. We write (2.1), (2.2) ih matrix form

(2.5) o q¥®+ %, B=(0,0,...,0,8)

where w = (wo,-..'x',w ) is a column vector and Q an N+1 N+1 matrix.
It is well known that the solutioms of (2.1), (2.2) converge to the
steady state Bolution (2.4) if and only if the eigenvalues z of Q

satisfy lz] < 1. The eigensolufions ¢ have the form

v v . ~
¢, * 0Ky *+O0K5 s v=0,1,2,:..:,N, Kl{ke
where Kl’ Ka are the roots of
(2.6) z =k + 24 (P-1) + 3 2%(c-1)°

¢ must satisfy the homogeneous boundary conditions (2.2), i.e.

_1)P 1P = N N_
Ol(l(l 1) + 0‘2(K2 1) o, 0K," + 0K, = 0.

This system has a nontrivial solution if and only if
P N _ N _5yP
(2.7) (Kl 17k, =Ky (kym1)7

An easy calculation shows that for sufficiently small h +the relations
(2.6), (2.7) imply :

|]z) <1 -6, 8> 0 independent of h

for all eigenvalues of Q. This proves the theorem.

We next investigate the case where we use extrapolation also at
x=a, i.e. we replace (2.2) by

3 *0. (For simplicity we set p=l.)

n
(2.8) D v," = hD+vn_

In this cese we have

- g v ———
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Theorem 2.2. Assume that v(x,0) = f(x) is a smooth function with
daf(a)/dx = 0. Then the solutions of (2.1), (2.8) converge for h =+ 0
to the solution of (1.2) which satisfies the boundary condition

(2.9) v(a,t) = f(a)

Proof. Let
“v“ = D+w9n, 'v=0,1,2,...,K-1.

Then Gv“ is the solution of (2.1) which satisfies the initial and

boundary conditions

#%«pe w3 . .80 FB=F O

v, v = 0, n=0,l1,2,... .

S. Parter [3] has shown that the ;\’n are uniformly bounded and for
any § > 0

(2.10) sup |y(xv,tn)~;rvn| +0 as h=+0.
6_<_xv§_a,0_<_tn§'r

Here y is the solution of (1.2) with initial and boundary conditions

v(x,0) = daf(x)/ax , y(a,t) = 0 = af(a)/dx .

Therefore we have also that

n

y n ; §

limDw, .~ =y(a,t ) =0 , limhDDw, . =0

0 0 N-1 ’"n o N-1
and by (2.1)

- n*l_w n

lim-g:l—i——ﬁ- =0, i.e. 1lim wN-ln = f(a) .

b0 0 .
Now

N-2 R-2

n n ~ n

v =~ J Dwth-w == ] ¥hh-w_

3 vej +v N-1 vej N-1
and by (2.10)

&
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sup |v(xv,t)~w(xv.t)| +0 as h-+0,
(2.11) 8£x Su,08 <P

a
v(x,t) = f(a) - [ y(g,t)a .
x

v(x,t) is the solution of (2.1) which satisfies the boundary condition
(2.9). Also, for 0 < x, < 6 ve have

Iv(xv,t)-w(xv,t)l < |v(x,t)-w(x,t)| + |v(xv,t)-v(;c,t)|
(2.12)
+ |w(;c,t)~w(xv,t)| < const. §

where x = xu is a gridpoint with § < xu < 8 + h. This proves the
theorem.
For steady state calculations we have

Theorem 2.2. For fixed k,h the scheme (2.1), (2.8) is weskly
convergent as n -+ o i,e. the limit function v depends on the

initial values .

Proof. We write (2.1), (2.8) again in the matrix form (2.5). An
easy calculation shows that z = 1 1is a simple eigenvalue corresponding
to the eigenfunction 3 = const..All the remaining eigenvalues satisfy

again |z| < 1 - § < 1. This proves the theorem.

Thus the steady state depends on the initial function f(x). If we
replace f(x) by f(x) + const. then also the steady state changes
by this constant. Observe that the rate of convergence is the same as
in theorem 2.1.

As a third alternative we consider

(2.13) von =g, hDw .

D.o,

i.e. the boundary values are given on the "wrong side". This corresponds,
for example, to the subsonic case in fluid mechanics where all the
variables are prescribed on the inflow side. In a similar way as theorem
2.2 on can prove

e e A ————
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Theorem 2.4. Assume that the conditions of theorem 2.2 are satis-—
fied. Then the solution of (2.1), (2.13) converges for h + 0 on any
finite demain § < x<a, 0< t < T to the solution of (1.2), (2.9).

For steady state cdalculatiomswe have

Theorem 2.5. For fixed k,h the solution of (2.1), (2.13) converges

for n + ® to the unique steady state wbw = gy v=0,1,2,.1.,N if and

only if N is odd. Also, the speed of convergence is extremely slow.

Proof. The condition (2.7) for the existence of a nontrivial

golution becomes now
N-1 _ _ N-1, _
(2.14) (Kl-l)Kl =K, (K2 1) .

Using (2.6) and (2.1L4) an easy calculation shows that there is one

eigenvalue of the form

N-1
z*1+ (-1)NA %;%-(%;% , Ask/h,

vhile all the other eigenvalues satisfy |z| < 1 - § < 1. Therefore, we
obtain growing solutions if N is even, but converging solutions if

N is odd. The rate of convergence in the last case is determined by
the above eigenvalue, i.e. it is extremely slow. Furthermore, the
solution will contain oscillatory components near the boundary.

For converging solutions the steady state is given by

L v V)
(2.15) W, = 0K+ 0K,
where Kl,xa are the roots of
2 2 "
kK -1+ A(k-1)" =0, i.e. K = (1-2)/(1+0), K, = 1
0

v, must satisfy the boundary conditions (2.13). Therefore

-1 ¥-1
(xl 1) + o Ko (‘2 1) =0

& N
T T 6 Y 2

wvhich gives us o, = 0, 0, = g and the theorem follows.

1l 2
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By theorem 2.l the solution of (2.1), (2.13) converges to the
solution of (1.2), (2.9) on every finite time interval. Since
v(x,t) = f(a) for t > a this seems to indicate a contrsdictios !
the result of theorem 2.5. However, it can be explained in the
following way. For fixed values of k,h, a typical calculation wii.
after a relativgly short time give a good approximaticn of wix,t
f(a), but it will later change very slowly and finally converge tc &
The following calculation illustrate this point.-We compute the sciut.
of (2.1), (2.13) on the interval 0 < x < 1 using

0 n

. n
W= fv = 8in X, w. = hD w

v \Y 0 + N-1 -9

as initial and boundary conditions. The figures show w(2/3,t) s »
function of time in two different scales. It is very tempting to com
sider the solution as a steady state after a relatively short time.
However, as can be seen from fig. 1, the solution at t = 2 has nothisg
to do with the final steady state.

We can also use higher order extrapolation at the boundary

PR P n _
(2.16) (1D, )" wy" = (WD) wy ;" =0, p>1.

The condition (2.7) for a nontrivial solution becomes
APl 33P0t NP F-py
(Kl 1) (K2 1) (K2 -« ) =0

and there is an eigenvalue z =1 of order p which has only one =iges
solution. Therefore there are solutions which grow like tp-l and for
steady state calculations no convergence will occur.

For calculations on a finite time interval, we can, using the same
technique as in theorem 2.2, prove that the solutions converge for
h+ 0 to a solution of (1.2) which satisfies the boundary conditiom

Pv(a,t)/3xP = 0 .
The results in this section can also be generalized to equatioms

ov/at = a 3v/3x, a>0
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and difference schemes
n+l 2 n
v, = (I+okD,+BK D+D_)wb .
Stability for the Cauchy problem requires
1 2
B<Zs A" <2B where A = ak/h.

0 : We note in particular, that for the case of overspecification at
x = 0, we get convergence to a steady state if and only if at least
4 one of the following conditions is satisfied.

1) N is odd, 2) A<28.

(/ Therefore, by strengthening the von Neumann condition, we can avoid the
restriction on N. However, the speed of convergence is still extremely
low.

u
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3. Difference approximations for systems with constant coefficients.

In this section we will make a few comments on the numerical solution

of systems

av/ot = A 3v/3x , O <x<a

vhere v = (;(1).,. “’;(n)), is a vector function with n components
and A a constant nxn matrix. We assume that A can be transformed
to diagonal form and that the eigenvalues of A are real and nonzero,

i.e. there exist a nonsingular transformation S such that

Al 0

(3.1) A =stas=
0 A2

where

xlo"'..o Ar+lo ....0

Ao G . s 40 A <o

(3.2) Al‘ ?- c2. e o o o o >o’ Aag 0 r+20 o <o

o.o.ooooA 0.....-0A

n

are positive and negative definite diagonal matrices respectively.

The Laex-Wendroff scheme is given by

~ n+l 22  \~n
(3.3) = (1+xADx"ADD v, O0<v < N.

¥y
To determine its solution we have again to specify' boundary conditions
at x=0 and x = a. If the boundary conditions are of the same type
for all components of ;, for example

(3.4) wlag, WDW

n
0 W1 0

then all the results of the last section apply. We need only to introduce

new variables v, = S-l;v to obtain
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n+l 2,2 n
v, = (eepD+xA%D 0 W, 0<v<n

(3.5)
n n

p | Vo * & hD _w,

+'N-1 0

i.e. n decoupled problems of type (2;1), (2.13).

This transformation can also be used to discuss general boundary
conditions. For example, specify at x = 0 correct boundary conditions
and extrapolate at x = a all variables. Then, after transformstion,
these boundary conditions become

/‘\.

(o)™ = By (v, + (g™, (mD,)Pw, 1) = a(mp,)P(w TT)®

(3.6)
hD. w n=O.

L ] + N-1

Here wI, wn correspond to the partition of A and R, Q denote
(-Bxr and r¥n-r) metrices respectively. Then w converges to a
solution of

(3.7) ov/at = A av/3x

with boundary conditions

(3.8) v1(0,8) = Ryv1(0,8) + g, T(¢), avi(s,t)/ax =0 .
(_) By (3.7) the relation avI/Bx = 0 implies avI/at = 0 and therefore
(3.9) vI(a,t) = vI(a,O) v
C) . Thus in steady state calculations the steady state depend on the
1 ) initial values.
i
|
|
L)
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L. General considerations for problems in one space dimension. In
this section we consider hyperbolic systems

3u/at = A(x,t)au/ax

vwith variable coefficients in the quarter space 0 < x<w , t>0
vhere the matrix A depends smoothly on x,t. We assume that there is
e smooth transformation S(x,t) such that (3.1),.(3.2) hold for every
fixed x,t. Then we can introduce new dependent variables u = S-l;x and
obtain

(5.1) 3u/at = A 3u/dx + Bu, B = -5 125/dt + 5 1A 35/3x .
For t =0 initial values
(s.2) u(x,0) = f(x), O0<x<=

and for x = 0 boundary conditions

II(

(4.3) u(0,t) = RouI(O,t) +gy (¢) , t20

ere given. Here f(x), SOII(f) are smooth functions, ul = (u(l),...,u(r))',

II (r+1) (n)).

u’ = (u geessl correspond to the partition of A , and R

0
is an (n-r)xr matrix. Thus the number of boundary conditions is equal
to the number of characteristics with enter the region x > O0,t > 0.

If we want to solve the above problem numerically we have to replace
the infinite interval 0 < x < ® by a finite one. There are two ways
to do this.

1) Determine some transformation of the independent variable x
vhich transforms 0 < x < ® into 0 < x < a.

2) Replace 0 < x < ® directly by 0 < x<a and findet x=a
a function glI(t) such that the solution of

(L.b) v/3t = A 3v/3x + Bv, oiiga, t>0

with initial conditions

W) wWx0) eflx) , O<xca
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and boundary conditions

(4.6) vii(0,t) = R v (0,8) + g,"T(8) vi(a,t) = g '(t) , 20

differs at most slightly from the solution of the original problem
(4.1)-(k.3).

Connected with the above equations is the following problem.
Consider the system (L.l)

(4.7) dy/at = A 3y/3x + By, x>e, t >0
for x > a with initial values
(k.8) y(x,0) = f(x) , x> a

and boundary conditions

II(

(5.9) ¥y at) = g (H) .

We can express the solution u(x,t) of (4.1)-(4.3) with help of
v(x,t) and y(x,t). The following lemma is obvious.
Lemma U.1.
vix,t) , x<a

(4.10) u(x,t) = s t20,
y(x:t) » X2 a8

if and only if
h11)  via,e) = g T(e) = y(at), vH(a,0) = g TI(8) = 3 T(a,0) .

We can state this result in another way. Let f(x) be fixed. Then
the problem (4.7)-(L.9) has for every gln(t) a unique solution
y(x,t). In particular, y (a,t) is uniquely determined by ¥y I(a,t) =
¢1n(t). Thus there is a linear operator Rl(t) such that

(312)  yi(s,t) =R (t)yT(a,e) + vE(H) .
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Here bI(t) is determined by f(x) and Rl(t) depends on yII(a,E)
for 0 < & < t. Assume that R, and bI are known. Choose the function

1 1
g, (t) in (4.6) such that
(1.23)  vi(a,t) = R ()T (e,t) + b(e) .

We have

Lemma 4.2. u(x,t) = v(x,t) for 0<x<e, t>0 if and only if
(,' (4.13) holds. Thus (4.13) can be considered as the missing boundary
condition.

Proof. Assume that v(x,t) satisfies (4.13). Choose glII(t) in
(4.9) such that yII(a.,t) = slII.(t) = vn(a,t). Then by (4.12) and (4.13)

also yI(a,t) = vI(a,t) and by lemma 4.1 we obtain u(x,t) = v(x,t) 4

for 0< x < a,t > 0. Conversely, if u(x,t) is a solution of J

(4.1)-(4.3) then it is also a solution of (4.7)-(b4.9) end must satisfy

(4.12). Therefore, if u(x,t) = v(x,t) for 0< x < a,t > 0 then 4

v(x,t) must staisfy (4.13). This proves the lemma. : |
In general Rl(t),bI(t) a;e very complicated. There are only some

special cases where Rl and b can be represented in a simple wvay.

1) r = 0, i.e. all eigenvalues of A(a,t) are negative, i.e. all
characteristics at x = a point out of the region 0 < x < a,t > 0. In

II

this case y =y and the relation (4.12) is empty. Therefore v(x,t)

! (.) does not need to satisfy any boundary conditions at x = a.

2) r>0 but A(x,t) = A(a) is a constant matrix for x > a. Then
B the transformation S is independent of x,t and B = O for x > a.
‘;J Therefore we can compute the first r components of y(x,t) explicitely.
They are given by
y(J)(x,t) = f(J)(x+th) PR T TR

leading to

r(j)(a.t) = f(j)(w\jt) s J%1,2,...,r.

fv-
L

ot N = —1-.—-——“
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The relstion (4.12) holds with R, =0 and bl = (f(l)(ai-llt),...,f(r)(aﬂrt))'.;
It is clear that v(x,t) depends very much on the initial values

for x > a. There is only one simple case, namely
f(x) = £_ = const. for x> a.
Then (4.13) becomes

(bab)  vHa,t) =5 L)
(b.14) is equivalent with

(b.14) vi(a,t)/3x = 0 ,

I

because (4.14)' implies 3vI(a.,t)/3t = 0, i.e. vI(a,t) = vI(a,O) =f
Thus the boundary conditions (3.4) (extrapolation of all the variables
at x = a) can be used.

Without restriction we can assume that . f_ = 0. Otherwise we would
consider the function u = w - f_ - Then also bI = 0 and the relation
(4.13) becomes

via,t) =0 , for t>0. |

The last relation means that we set the characteristic variables
associated with the "ingoing" characteristics equal to zero, or as |
B. Engquist and A. Majda [1] call it, that no reflection takes place '
at the boundary. Therefore this principle is useful if we subtract from
the solution its constant state at infinity. :

From now on we shall always make

Assumption 4.1. f(x) 2 0 for x> a, i.e. v(t) = o.

Assume that A depends on x,t also for x> a. Then B$ 0 and
in general yI, yn are coupled and we cannot determine Rl(t) without
making detailed calculations of y(x,t). Only if A(x,t) converges to
a constant matrix Ao as x + ® we can do better. We make
Gt

v (a,t) can also be obtained in a fairly simple way if ve require
only that B has the form

B.. 0
TH ) .
By By

r. M = » ‘
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Assumption 4.2. The matrix B(x,t) can be written in the form
(4.15) B(x,t) = o(x)Bl(x,t)
wvhere ¢(x) is a scalar function with

(4.16) [ lo(x)|ax < e
a
and

(5.27) 1Bl = swp B (x,t)] <2
ag<x<»,t>0

Here |Bl(x,t)| denotes the maximum norm at the point x,ti
Assume for example that A is of the form

A(x) = A, +-:'—2A1(x,t) sy X2>a

and that the eigenvalues of A. are all distinct. Then S is of the

0
form
1 s 1
S=S°+ 2Sl(x,*l:) 5 1.et Bs 231 .
x x
Thus ]
2 (- -]
¢ = const./x“ , [ |¢|ax < const./a .
a
We need

Lemma 4.3. Consider the system
dy/at = A Jy/3x + ¢(x)G(x,t)
for x> a, t2>0 with zero initial and boundary conditions

y(x,0) =0 for x> a, yn(a,t) =0 for t>0.

Assume there is a constant Ao > 0 such that

(4.18) int |A.] > AL . ,
ttxoj l jl T .
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Holl <emg tlell + Hll = sup |5
x,t,1

Proof. We néed to prove the estimate only for scalar equations
dy/3t = A(x,t) 3y/ax + ¢(x)G(x,t)

vith appropriate boundary conditions. Using the method of characteristics
we obtain

dy/ds = ¢(x)G(x,t) , dat/ds =1 , dax/ds = -A(x,t) .

Therefore
8 s

(o} . (v}
[y(x(s,),t(s)))] =|f°¢(x(8))G(x(s),t(s))d3l < llel] [ lelx(s))]as <
0

< llell [ 1) o ax < ey Hlell
0

vhich proves the lemma.
The last lemma gives us

Theorem 4.1. Assume that the assumptions 4.1 and 4.2 are valid and
that (4.18) holds. If c/ko < 1 then the solution of (4.7) can be obtaind
by the iteration process

3yn*1/3t -A ayn*llax = ¢(x)Bl(x,t)yn
(4.19) -

yn+1(x’°) o, Yifl(ﬂot) - BiI(t) ’

n=0,1,... ; yb(x,t) 20 .

Proof. Yael = Ypey = ¥y BY leuma 4.3

HFgea !l <ltenng) Hly Il o me1,2,...

and the convergence follows. This proves the theorem.
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In the usual way we obtain the estimate

® L 1 _'_'
Hy=vyll < T 1Ivl] < 35575 vl | = @(eing))
v=l 0 - _
and by (4.19) :
Y{(x,t) = fibie
(k.20) -
; 11
QY{I/M - A, 3}’{1/31: =0, y]I_I(x,Q) = 0, in(a,t) =g

Thus if we allow an error of order I c/Ao) extrapolation or the
principle of no reflection at x = a 1is appropriate. If this error

is not a.céeptable then we have to compute yg defined by

¥, i s o .
(b.21) W,/ t - A By,/ax = By, ¥y(x,0) =0,
where 312 is defined by
By By
By . . :
By By P

Then
Ny'=vZTH = 0eny)®

and we assume that this error is tolerable.

If one is interested in the whole time dependent process then not
much is gained because to compute yg(a,t) as a function of g{I(t)
we have to solve (4.20) and (4.21) completely. Thus one should instead
make a 80 large that an error of order O(cllo) can be tolerated.

There is one exception. If c|!812|| is small, i.e. the in- and

-outgoing waves are almost decoupled, then ¥, is almost zero and the

complete solution is essentially given by (4.20). In this case the
principle of no reflection is appropriate. o

The situation becomes more fevourable if we are only interested
in the steady state solution, i.e. consider the= case that

“Fasa,

&(t) = g8(=) ana B (x,) > .B'l(:é"':_:}(x,t) + Ax) .

()

Py e R
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Then for t + «

x -
30, v v ge), v3x) > [ o A B e glNe)

Thus y, satisfies in the limit the relation
yiet) = call@), c=[o¢ Als .
(- -]

Therefore, by lemma 4.2, we should use for v(x,t) at x =a the
boundary conditions

vI(a,t) o vII(a,t) 5

i

Observe, however, that one has to know the asymptotic expansion of

in detail to compute C.

——
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5. Problems in two space dimensions. We start with an example. Con-

sider the system

+#1 O 0o 1

ow ow ow -u
(5.1) e /& “\2 0/ c "]

on the domain R as given in fig. 1 or fig. 2. For t = 0 ipitial
values

(5.2) u(x,y,0) = v(x,y,0) , (x,y)EQ, t=0,

ead for (x,y)€9 0 boundary conditions are given. In particular we
assume that on Bl

(5.3) v(o,y,t) =h(y) , t>0, x=0,
and on B3’Bh
(SJ‘) u(X.Y.t) =0, (st) €B3 U Bu, t Z 0.

Without restriction we can assume that B3’Bh are given by x > a,y =1
and x > a,y = 0 respectively.

We want to determine the solution of the above problem on ﬂl only.
Therefore we need one relation between u,v on 82. The boundary
conditions (5.4) imply that for x > a the solution of our problem can
be expanded in Fourier series

@ @

(5.5) u= J f(x,w,t)sinmuy, vt%(x,t) + ) v(x,w,t)cosmuy .
w=1 w=1

Introducing (5.5) into (5.1) gives us for x > a

(5.6) o/t = ~avy/3x,
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oo el 0 -1
(5.7) %‘é’ g—: + Tw v, w=l,2,... .
0 -1 1 O

For every fixed frequency w {! 0 the system (5.7) is of the same form
as the onedimensional problem (4.1) and the results of the last sectiom
. apply. Therefore if we are interested in the whole time dependent process

not much is gained by restricting the problem to the dcmain except inm

. the case that w(w,x,t) can be neglected for w=1,2,...;.Then the
solution of our problem is essentially independent of Y.
( The situation is again different if we are only interested in the

steady state. Then we can replace (5.6), (5.7) by

C (5.8) 3v,/0x = 0
: “ ey 0 -1
(5.9) g—:+ﬂw V=0, wsl,2,...5.
0 -1 10

The solution of (5.9) is given by

—eum(x-a)s -wm (x-a)s

a(xs‘"’t) = (a’w’t)s ";(xawit) =e (a’wot) ’

which gives us for x = a

CV (5.10) waw,t) = -v(a,w,t) .

. 237 Therefore we have determined the desired relation

-2
i (J u(a,y,t) = Rv(a,y,t)
§ ° because if wve know v then we can expand it in a cosine series and by
| (5.10) we obtain the sine series for u. This process can be performed

——

mmerically by using the fast Fourier transform.
It is not necessary that the coefficients of (5.1) are constant. We
ean also consider systems

’-.. ——
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A (y) 0 0 a(y)
ot ax oy
0 —xz(y) aly) o

vhere the coefficients depend on y. The steady state solution can
again be solved in terms of eigenfunctions

Qteud»(y) » Realk < O,

which gives us the desired relation between u &nd v on Bz.
Whether this procedure is feasible numerically depends on how easy it
is to compute the eigenfunctions and how many are needed to represent
the relation between u and v.

A1l the results can be carried over to general hyperbolic systems
ow/at = Alavlax + A, ow/dy .

Again, if one is interested in the complete time dependent process thcn
not much is gained by restricting the problem to the domain Q, except
in the case where we can neglect A2 ow/dy. If we are only int;rested
in the steady state then we can obtain the desired relations on B

2
between the components of w by solving the steady state equations

A1 ow/x + A2 ow/3y = 0

in terms of eigenfunction expansions.

We want to point out that there are problems in two space dimensions

which can be transformed on one-dimensional form. Consider for example
equation (5.1) on some domain Q containing the origin. We introduce
polar coordinates by

x = r cosb

y = r sinf

and obtain from (5.1)

aw cosé sine) w1 (—sine cose) o
90

at 8in® -cos6 w - cos® sind

—
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Defining new dependent variables by

0 o 0
cos 3 8in 3 :
wsE= 8 9 u s T(0)u
8in 7 -cos 7
we get the equivalent system
l1 O -8in® cos6
u. 24 L1rYe) , ) m(e) 28
0 -1 S cos®@ sind
1 0
5= u .
Tlo -1

Therefore, if the initial data are such that u(r,0,0) is independent of

0 , then u(r,0,t) is independent of 6 for all t, t > 0. In particular,

ve get a nonreflecting boundary condition if uI = 0 1is specified at
all points on 9Q .
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